函数无穷小怎么证明?
2021-11-25

证明:

对任意的ε>0,令│x│<1/2,则1/(x+1)<2。解不等式

│x/(1+x)│<│2x│=2│x│<ε

得│x│<ε/2,取δ=min[1/2,ε/2]。

于是,对任意的ε>0,总存在δ=min[1/2,ε/2]。当│x│<δ时,有│x/(1+x)│<ε。

即 lim(x->0)[x/(1+x)]=0。

无穷小性质:

1、无穷小量不是一个数,它是一个变量。

2、零可以作为无穷小量的唯一一个常量。

3、无穷小量与自变量的趋势相关。

4、有限个无穷小量之和仍是无穷小量。

5、有限个无穷小量之积仍是无穷小量。

6、有界函数与无穷小量之积为无穷小量。

7、特别地,常数和无穷小量的乘积也为无穷小量。

8、恒不为零的无穷小量的倒数为无穷大,无穷大的倒数为无穷小。

大家都在看
本站系本网编辑转载,转载目的在于传递更多信息,并不代表本网赞同其观点和对其真实性负责。如涉及作品内容、版权和其它问题,请在30日内与本网联系,我们将在第一时间删除内容!本站文章版权归原作者所有,内容为作者个人观点。本站只提供参考并不构成任何投资及应用建议。本站拥有对此声明的最终解释权。