判断二维随机变量一定是独立的吗?
2021-10-01

协方差cov是用来刻画随机变量之间的线性关系的。定义cov(X,Y)=0即X与Y不相关(也可以叫线性无关) 但是不相关并不就是独立,独立这个条件比线性无关强,就是纯粹无关,无论线性无关,还是非线性无关。

也就是说: 独立=>不相关 不相关≠>独立 但是碰巧的是,有两个特殊的例子,一个是二元正态随机变量,还有一个是二元Bernoulli随机变量,他们独立不相关 也就是说他们要么就没有关系,要有关系就一定是线性的。

为什么呢?

拿二元正态随机变量来说,你求协方差矩阵的时候碰巧右上角跟左下角的元素都是ρσ1σ2,ρ=0或ρ≠0完全决定了关系是不是线性。

 

大家都在看
本站系本网编辑转载,转载目的在于传递更多信息,并不代表本网赞同其观点和对其真实性负责。如涉及作品内容、版权和其它问题,请在30日内与本网联系,我们将在第一时间删除内容!本站文章版权归原作者所有,内容为作者个人观点。本站只提供参考并不构成任何投资及应用建议。本站拥有对此声明的最终解释权。