为什么三阶行列式为零时,线性相关?
2021-11-10

原因:线性相关就是各行或列能互相线性表示,能进行初等变换,把某一行或列变换到另一行或列,最后有一行会全为0,计算时行列式就等于0。

所以行列式等于0就是线性相关。

相反的,线性无关它的行列式不等于0,说明是满秩,没有一行或一列全为0。

没有具体的定理。

在n维欧几里得空间中,行列式描述的是一个线性变换对“体积”所造成的影响。

对于任一向量组而言,,不是线性无关的就是线性相关的。向量组只包含一个向量a时,a为0向量,则说A线性相关; 若a≠0, 则说A线性无关。

包含零向量的任何向量组是线性相关的。

扩展资料:

向量a1,a2, ···,an(n≧2)线性相关的充要条件是这n个向量中的一个为其余(n-1)个向量的线性组合。

一个向量线性相关的充分条件是它是一个零向量。两个向量a、b共线的充要条件是a、b线性相关。三个向量a、b、c共面的充要条件是a、b、c线性相关。

行列式A中某行(或列)用同一数k乘,其结果等于kA。

行列式A等于其转置行列式AT(AT的第i行为A的第i列)。

若n阶行列式|αij|中某行(或列);行列式则|αij|是两个行列式的和,这两个行列式的第i行(或列),一个是b1,b2,…,bn;

另一个是с1,с2,…,сn;其余各行(或列)上的元与|αij|的完全一样。

大家都在看
本站系本网编辑转载,转载目的在于传递更多信息,并不代表本网赞同其观点和对其真实性负责。如涉及作品内容、版权和其它问题,请在30日内与本网联系,我们将在第一时间删除内容!本站文章版权归原作者所有,内容为作者个人观点。本站只提供参考并不构成任何投资及应用建议。本站拥有对此声明的最终解释权。