矩阵不是满秩说明什么?
2021-03-16

应该说不满秩的方阵,对应的行列式必然为0

因为不满秩,说明方阵的各行向量(或列向量)线性相关(如果线性无关,就满秩了)

而行向量线性相关,就说明至少有一行可以由其他行乘系数相加得到,这根据行列式的性质可知,这样的行列式为0。

例子,现在我们假设第一个矢量是(1.0),第二个矢量是(0,1),也就是说两个矢量分别是X轴和Y轴上的单位为正的单位向量,那么由这两个矢量构成的四边形,这个四边形其实就是一个正方形,根据面积的定义,其实就是*宽=1*1=1。

扩展资料

如果A的行列式不为零,那么A可以把一组线性无关的矢量,映射成一组新的,线性无关的矢量;A是可逆的(一对一的映射,保真映射,KERNEL是{0})。

如果A的行列式为零,那么A就会把一组线性无关的矢量,映射成一组线性相关的矢量;A就不是可逆的(非保真映射,KERNEL不是{0}。

我们可以研究他的陪集)。

大家都在看
本站系本网编辑转载,转载目的在于传递更多信息,并不代表本网赞同其观点和对其真实性负责。如涉及作品内容、版权和其它问题,请在30日内与本网联系,我们将在第一时间删除内容!本站文章版权归原作者所有,内容为作者个人观点。本站只提供参考并不构成任何投资及应用建议。本站拥有对此声明的最终解释权。