函数极限到负无穷的精确定义?
2021-09-16

对于任意ε>0,存在正整数X,使得对任意x>X,|f(x)+∞|<ε恒成立。则称limf(x)=-∞(x→∞)

证明:

对任给的 ε>0 (ε<1),为使

|2^x| <= 2^x < ε,

只需 x < lnε/ln2,于是,取 X = -lnε/ln2 > 0,则当 x < -X 时,有

|2^x| <= 2^x < 2^X = ε,

根据极限的定义,成立

lim(x→-∞) 2^x = 0。

扩展资料:

极限的求法

1、恒等变形

当分母等于零时,就不能将趋向值直接代入分母,可以通过下面几个小方法解决:

(1)因式分解,通过约分使分母不会为零。

(2)若分母出现根号,可以配一个因子使根号去除。

(3)以上我所说的解法都是在趋向值是一个固定值的时候进行的,如果趋向于无穷,分子分母可以同时除以自变量的最高次方。

(通常会用到这个定理:无穷大的倒数为无穷小)

当然还会有其他的变形方式,需要通过练习来熟练。

2、通过已知极限

特别是两个重要极限需要牢记。

3、采用洛必达法则求极限

洛必达法则是分式求极限的一种很好的方法,当遇到分式0/0或者∞/∞时可以采用洛必达,其他形式也可以通过变换成此形式。

大家都在看
本站系本网编辑转载,转载目的在于传递更多信息,并不代表本网赞同其观点和对其真实性负责。如涉及作品内容、版权和其它问题,请在30日内与本网联系,我们将在第一时间删除内容!本站文章版权归原作者所有,内容为作者个人观点。本站只提供参考并不构成任何投资及应用建议。本站拥有对此声明的最终解释权。