阿贝尔群的定义和特征?
2021-03-27

定义:

亦称交换群。一种重要的群类。对于群G中任意二元a,b,一般地,ab≠ba.若群G的运算满足交换律,即对任意的a,b∈G都有ab=ba,则称G为阿贝尔群。

由于阿贝尔(Abel,N.H.)首先研究了交换群,所以通常称这类群为阿贝尔群。交换群的运算常用加法来表示,此时群的单位元用0(零元)表示,a的逆元记为-a(称为a的负元).用加法表示的交换群称为加法群或加群。

阿贝尔群是有着群运算符合交换律性质的群,因此阿贝尔群也被称为交换群。它由自身的集合 G 和二元运算 * 构成。它除了满足一般的群公理,即运算的结合律、G 有单位元、所有 G 的元素都有逆元之外,还满足交换律公理

因为阿贝尔群的群运算满足交换律和结合律,群元素乘积的值与乘法运算时的次序无关。

而群运算不满足交换律的群被称为“非阿贝尔群”,或“非交换群”。

性质(特点):

如果n是自然数而x是使用加号的阿贝尔群G的一个元素,则nx可以定义为x + x + ... + x(n个数相加)并且(−n)x = −(nx)。

以这种方式,G变成在整数的环Z上的模。事实上,在Z上的模都可以被识别为阿贝尔群。

关于阿贝尔群(比如在主理想整环Z上的模)的定理经常可以推广到在任意主理想整环上的模。典型的例子是有限生成阿贝尔群的分类是在主理想整环上的有限生成模的结构定理的特殊情况。

在有限生成阿贝尔群的情况下,这个定理保证阿贝尔群可以分解为挠群和自由阿贝尔群的直和。前者可以被写为形如Z/pkZ对于素数p的有限多个群的直和,而后者是有限多个Z的复本的直和。

如果f, g : G → H是在阿贝尔群之间的两个群同态,则它们的和f + g,定义为(f + g)(x) = f(x) + g(x),也是阿贝尔同态。

(如果H是非阿贝尔群则这就不成立。)所有从G到H的群同态的集合Hom(G, H)因此是自身方式下的阿贝尔群。

某种程度上类似于向量空间的维度,所有阿贝尔群都有秩。它定义为群的线性无关元素的最大集合的势。整数集和有理数集和所有的有理数集的子群都有秩1。

大家都在看
本站系本网编辑转载,转载目的在于传递更多信息,并不代表本网赞同其观点和对其真实性负责。如涉及作品内容、版权和其它问题,请在30日内与本网联系,我们将在第一时间删除内容!本站文章版权归原作者所有,内容为作者个人观点。本站只提供参考并不构成任何投资及应用建议。本站拥有对此声明的最终解释权。