牛顿法的原理与算法?
2021-01-27

牛顿迭代法是用于求解等式方程的一种方法。

类似于求解F(x)=0的根,牛顿迭代法求解的是近似根,这个想法准确来说来源于泰勒展开式,我们知道,有些时候,我们需要求解的表达式可能非常复杂,通过一般的方法,我们很难求出它的解。

所以采用了一种近似求解的方法,就是说,我们取泰勒展开式的前几项,队原来的求解函数做一个取代,然后,求解这个取代原方程的方程的解,作为近似解。

当然只对原方程做一次近似求解不行,因为第一次近似肯定不会太准确,所以还需要不断地迭代。

我们首先就要去一个值作为初始的近似值,然后去求解该点的泰勒展开近似项,然后求解根,之后,我们再以此根对原方程进行近似,然后再求解结果不断重复,迭代,最终就能求得近似解。

牛顿迭代法,取得是泰勒展开式的前两项,也就是线性近似,所以迭代比较快,容易计算。

大家都在看
本站系本网编辑转载,转载目的在于传递更多信息,并不代表本网赞同其观点和对其真实性负责。如涉及作品内容、版权和其它问题,请在30日内与本网联系,我们将在第一时间删除内容!本站文章版权归原作者所有,内容为作者个人观点。本站只提供参考并不构成任何投资及应用建议。本站拥有对此声明的最终解释权。