最高阶非零子式计算?
2021-01-14

设矩阵,求A的秩R(A),并求A的一个最高阶非零子式。将矩阵用初等行变换,化成行阶梯形矩阵,所以矩阵A的秩R(A)=3,A的最高阶非零子式是3阶子式。

行阶梯形矩阵B的非零行位于1,2,3行,非零行的非零首元位于1,2,4列,则在A中,选择由A的1,2,3行和1,2,4列交叉位置的9个元素,构成3阶行列式,即为所求的A的一个最高阶非零子式。

注意事项:

矩阵的秩是最高阶非零子式的阶数,最高阶非零子式对于理解矩阵的秩的概念、向量组的最大无关组的概念以及这两个概念之间的关系等有着非常重要的作用,很多情况下需要求出矩阵的一个最高阶非零子式。

通过初等行变换把矩阵化为行阶梯形矩阵,确定其秩为,取其非零行的非零首元所在的列所对应的原矩阵中的各列构成一个矩阵,有行列,有个阶子式,从中找一个非零子式即为原矩阵的一个最高阶非零子式。

这种方法比起用定义求最高阶非零子式可省去很多工作量,但仍需要排除一些零子式。

大家都在看
本站系本网编辑转载,转载目的在于传递更多信息,并不代表本网赞同其观点和对其真实性负责。如涉及作品内容、版权和其它问题,请在30日内与本网联系,我们将在第一时间删除内容!本站文章版权归原作者所有,内容为作者个人观点。本站只提供参考并不构成任何投资及应用建议。本站拥有对此声明的最终解释权。