高等数学书写方法?
2021-03-21

Α α alpha alfa 阿耳法

Β β beta beta 贝塔

Γ γ gamma gamma 伽马

Δ δ deta delta 德耳塔

Ε ε epsilon epsilon 艾普西隆

Ζ ζ zeta zeta 截塔

Η η eta eta 艾塔

Θ θ theta θita 西塔

Ι ι iota iota 约塔

Κ κ kappa kappa 卡帕

∧ λ lambda lambda 兰姆达

Μ μ mu miu 缪

Ν ν nu niu 纽

Ξ ξ xi ksi 可塞

Ο ο omicron omikron 奥密可戎

∏ π pi pai 派

Ρ ρ rho rou 柔

∑ σ sigma sigma 西格马

Τ τ tau tau 套

Υ υ upsilon jupsilon 衣普西隆

Φ φ phi fai 斐

Χ χ chi khai 喜

Ψ ψ psi psai 普西

Ω ω omega omiga 欧米伽

数学符号:

(1)数量符号:如:i,2+i,a,x,自然对数底e,圆周率π。

(2)运算符号:如加号(+),减号(-),乘号(×或·),除号(÷或/),两个集合的并集(∪),交集(∩),根号(√),对数(log,lg,ln),比(:),微分(dx),积分(∫)等。

(3)关系符号:如“=”是等号,“≈”是近似符号,“≠”是不等号,“>”是大于符号,“<”是小于符号,“→ ”表示变量变化的趋势,“∽”是相似符号,“≌”是全等号,“∥”是平行符号,“⊥”是垂直符号,“∝”是反比例符号,“∈”是属于符号,“C”或“C下面加一横”是“包含”符号等。

(4)结合符号:如圆括号“()”方括号“[]”,花括号“{}”括线“—”

(5)性质符号:如正号“+”,负号“-”,绝对值符号“‖”

(6)省略符号:如三角形(△),正弦(sin),余弦(cos),x的函数(f(x)),极限(lim),因为(∵),所以(∴),总和(∑),连乘(∏),从n个元素中每次取出r个元素所有不同的组合数(C(r)(n) ),幂(A,Ac,Aq,x^n),阶乘(!)等。

数学符号的意义

符号意义

∞无穷大

π 圆周率

|x|绝对值

∪并集

∩交集

≥大于等于

≤小于等于

≡恒等于或同余

ln(x)以e为底的对数

lg(x)以10为底的对数

floor(x)上取整函数

ceil(x)下取整函数

x mod y求余数

x - floor(x) 小数部分

∫f(x)dx不定积分

∫[a:b]f(x)dxa到b的定积分

数学符号的应用

P为真等于1否则等于0

∑[1≤k≤n]f(k) 对n进行求和,可以拓广至很多情况

如:∑[n is prime][n < 10]f(n)

∑∑[1≤i≤j≤n]n^2

lim f(x) (x->) 求极限

f(z) f关于z的m阶导函数

C(n:m) 组合数,n中取m

P(n:m) 排列数

m|n m整除n

m⊥n m与n互质

a ∈ A a属于集合A

大家都在看
本站系本网编辑转载,转载目的在于传递更多信息,并不代表本网赞同其观点和对其真实性负责。如涉及作品内容、版权和其它问题,请在30日内与本网联系,我们将在第一时间删除内容!本站文章版权归原作者所有,内容为作者个人观点。本站只提供参考并不构成任何投资及应用建议。本站拥有对此声明的最终解释权。