什么是奇延拓、偶延拓?
2019-12-19

一般地,在解题时,用奇延拓和偶延拓都是可以的。

但是在有一类题目中,即先让你将f(x)化成傅里叶级数,然后再利用级数求某一具体的级数的值,这个时候,就必须要采用合适的方法,我们一般是先用两种方法计算,然后再比较得出的傅里叶级数和所求级数,从而选择用奇延拓还是偶延拓。

法国数学家傅里叶发现,任何周期函数都可以用正弦函数和余弦函数构成的无穷级数来表示(选择正弦函数与余弦函数作为基函数是因为它们是正交的),后世称傅里叶级数为一种特殊的三角级数,根据欧拉公式,三角函数又能化成指数形式,也称傅立叶级数为一种指数级数。

大家都在看
本站系本网编辑转载,转载目的在于传递更多信息,并不代表本网赞同其观点和对其真实性负责。如涉及作品内容、版权和其它问题,请在30日内与本网联系,我们将在第一时间删除内容!本站文章版权归原作者所有,内容为作者个人观点。本站只提供参考并不构成任何投资及应用建议。本站拥有对此声明的最终解释权。