原函数的大小和导函数的大小?
2021-07-28
深入了解导函数与原函数的关系:
1、导函数:如果函数f(x)在(a,b)中每一点处都可导,则称f(x)在(a,b)上可导,则可建立f(x)的导函数,简称导数,记为f'(x)。
2、原函数:已知函数f(x)是一个定义在某区间的函数,如果存在可导函数F(x),使得在该区间内的任一点都有dF(x)=f(x)dx,则在该区间内就称函数F(x)为函数f(x)的原函数。
3、导数所体现的是原函数的变化趋势,不能表现原函数的大小、正负,比如原函数恒大于零,而它的导数则没有这种特性。导函数的几何意义是原函数的图像在某点切线的斜率,另外,对求最值解不等式都有重要的意义。
大家都在看
本站系本网编辑转载,转载目的在于传递更多信息,并不代表本网赞同其观点和对其真实性负责。如涉及作品内容、版权和其它问题,请在30日内与本网联系,我们将在第一时间删除内容!本站文章版权归原作者所有,内容为作者个人观点。本站只提供参考并不构成任何投资及应用建议。本站拥有对此声明的最终解释权。